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Abstract

BERT adopts masked language modeling
(MLM) for pre-training and is one of the most
successful pre-training models. Since BERT
neglects dependency among predicted tokens,
XLNet introduces permuted language model-
ing (PLM) for pre-training to address this prob-
lem. We argue that XLNet does not lever-
age the full position information of a sen-
tence and thus suffers from position discrep-
ancy between pre-training and fine-tuning. In
this paper, we propose MPNet, a novel pre-
training method that inherits the advantages of
BERT and XLNet and avoids their limitations.
MPNet leverages the dependency among pre-
dicted tokens through permuted language mod-
eling (vs. MLM in BERT), and takes aux-
iliary position information as input to make
the model see a full sentence and thus re-
ducing the position discrepancy (vs. PLM
in XLNet). We pre-train MPNet on a large-
scale dataset (over 160GB text corpora) and
fine-tune on a variety of down-streaming tasks
(GLUE, SQuAD, etc). Experimental results
show that MPNet outperforms MLM and PLM
by a large margin, and achieves better results
on these tasks compared with previous state-
of-the-art pre-trained methods (e.g., BERT,
XLNet, RoOBERTa) under the same model set-
ting. We release the code and pre-trained
model in GitHub'.

1 Introduction

Pre-training models (Radford et al., 2018; Devlin
etal., 2019; Radford et al., 2019b; Song et al., 2019;
Yang et al., 2019; Dong et al., 2019; Liu et al.,
2019a; Raffel et al., 2019a) have greatly boosted
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the accuracy of NLP tasks in the past years. One of
the most successful models is BERT (Devlin et al.,
2019), which mainly adopts masked language mod-
eling (MLM) for pre-training’. MLM leverages
bidirectional context of masked tokens efficiently,
but ignores the dependency among the masked (and
to be predicted) tokens (Yang et al., 2019).

To improve BERT, XL Net (Yang et al., 2019)
introduces permuted language modeling (PLM) for
pre-training to capture the dependency among the
predicted tokens. However, PLM has its own limi-
tation: Each token can only see its preceding tokens
in a permuted sequence but does not know the po-
sition information of the full sentence (e.g., the po-
sition information of future tokens in the permuted
sentence) during the autoregressive pre-training,
which brings discrepancy between pre-training and
fine-tuning. Note that the position information of
all the tokens in a sentence is available to BERT
while predicting a masked token.

In this paper, we find that MLM and PLM can
be unified in one view, which splits the tokens in
a sequence into non-predicted and predicted parts.
Under this unified view, we propose a new pre-
training method, masked and permuted language
modeling (MPNet for short), which addresses the
issues in both MLM and PLM while inherits their
advantages: 1) It takes the dependency among the
predicted tokens into consideration through per-
muted language modeling and thus avoids the issue
of BERT; 2) It takes position information of all
tokens as input to make the model see the position
information of all the tokens in the sentence and

2We do not consider next sentence prediction here since
previous works (Yang et al., 2019; Liu et al., 2019a; Joshi
et al., 2019) have achieved good results without next sentence
prediction.
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thus alleviates the position discrepancy of XLNet.

We pre-train MPNet on a large-scale text corpora
(over 160GB data) following the practice in Yang
et al. (2019); Liu et al. (2019a), and fine-tune on a
variety of down-streaming benchmark tasks, includ-
ing GLUE, SQuAD, RACE and IMDB. Experimen-
tal results show that MPNet outperforms MLM and
PLM by a large margin, which demonstrates that
1) the effectiveness of modeling the dependency
among the predicted tokens (MPNet vs. MLM),
and 2) the importance of the position information
of the full sentence (MPNet vs. PLM). Moreover,
MPNet outperforms previous well-known models
BERT, XIL.Net and RoBERTa by 4.6, 3.2 and 1.3
points respectively on GLUE tasks under the same
model setting, indicating the great potential of MP-
Net for language understanding>.

2 MPNet

2.1 Background

The key of pre-training methods (Radford et al.,
2018; Devlin et al., 2019; Song et al., 2019; Yang
et al., 2019; Clark et al., 2020) is the design of
self-supervised tasks/objectives for model training
to exploit large language corpora for language un-
derstanding and generation. For language under-
standing, masked language modeling (MLM) in
BERT (Devlin et al., 2019) and permuted language
modeling (PLM) in XLNet (Yang et al., 2019) are
two representative objectives. In this section, we
briefly review MLM and PLM, and discuss their
pros and cons.

MLM in BERT BERT (Devlin et al., 2019) is
one of the most successful pre-training models for
natural language understanding. It adopts Trans-
former (Vaswani et al., 2017) as the feature extrac-
tor and introduces masked language model (MLM)
and next sentence prediction as training objec-
tives to learn bidirectional representations. Specif-
ically, for a given sentence x = (z1,z2, - ,Tp),
MLM randomly masks 15% tokens and replace
them with a special symbol [M]. Denote K as
the set of masked positions, zx as the set of
masked tokens, and z\ i as the sentence after mask-
ing. As shown in the example in the left side
of Figure 1(a), K = {2,4}, zx = {x2,24} and
m\g = (v1,[M],x3,[M],r5). MLM pre-trains

3We are still pre-training MPNet in larger model setting.
We also welcome someone who has computation resources to
pre-train larger MPNet models based on our released code to
further advance the state of the art.

the model # by maximizing the following objective
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PLM in XLNet Permuted language model
(PLM) is proposed in XLNet (Yang et al., 2019) to
retain the benefits of autoregressive modeling and
also allow models to capture bidirectional context.
For a given sentence © = (z1, 22, -+ ,zy) with
length of n, there are n! possible permutations. De-
note Z,, as the permutations of set {1,2,--- ,n}.
For a permutation 2z € Z,,, denote z; as the ¢-th
element in z and z; as the first £ — 1 elements in
z. As shown in the example in the right side of
Figure 1(b), z = (1,3,5,2,4), and if t = 4, then
2zt = 2,2, = xgand 2«4 = {1,3,5}. PLM pre-
trains the model # by maximizing the following
objective

1ng($; ‘9) = ]EZEZn Z IOgP(fL‘Zt ‘xz<t; ‘9)7
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where ¢ denotes the number of non-predicted to-
kens x.___. In practice, only a part of last tokens
.. (usually ¢ = 85% = n) are chosen to predict
and the remaining tokens are used as condition in
order to reduce the optimization difficulty (Yang
et al., 2019).

Pros and Cons of MLM and PLM  We compare
MLM and PLM from two perspectives: the depen-
dency in the predicted (output) tokens and the dis-
crepancy between pre-training and fine-tuning in
the input sentence.

e Output Dependency: As shown in Equation 1,
MLM assumes the masked tokens are indepen-
dent with each other and predicts them sep-
arately, which is not sufficient to model the
complicated context dependency in natural lan-
guage (Yang et al., 2019). In contrast, PLM fac-
torizes the predicted tokens with the product rule
in any permuted order, as shown in Equation 2,
which avoids the independence assumption in
MLM and can better model dependency among
predicted tokens.

e Input Discrepancy Since in fine-tuning of
downstream language understanding tasks, a
model can see the full input sentence, to reduce
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Figure 1: A unified view of MLM and PLM, where z; and p; represent token and position embeddings. The left
side in both MLM (a) and PLM (b) are in original order, while the right side in both MLM (a) and PLM (b) are in

permuted order and are regarded as the unified view.

the discrepancy between pre-training and fine-
tuning, the model should see as much informa-
tion as possible of the full sentence during pre-
training. In MLM, although some tokens are
masked, their position information (i.e., the po-
sition embeddings) are available to the model
to (partially) represent the information of full
sentence (how many tokens in a sentence, i.e.,
the sentence length). However, each predicted
token in PLM can only see its preceding tokens
in a permuted sentence but does not know the
position information of the full sentence during
the autoregressive pre-training, which brings dis-
crepancy between pre-training and fine-tuning.

As can be seen, PLM is better than MLM in
terms of leveraging output dependency while worse
in terms of pre-training and fine-tuning discrepancy.
A natural question then arises: can we address the
issues in both MLM and PLM while inherit their
advantages?

2.2 A Unified View of MLM and PLM

To address the issues and inherit the advantages
of MLM and PLM, in this section, we provide a
unified view to understand MLM and PLM. Both
BERT and XLNet take Transformer (Vaswani et al.,
2017) as their backbone. Transformer takes tokens
and their positions in a sentence as input, and is
not sensitive to the absolute input order of those
tokens, only if each token is associated with its
correct position in the sentence.

This inspires us to propose a unified view for
MLM and PLM, which rearranges and splits the
tokens into non-predicted and predicted parts, as
illustrated in Figure 1. For MLM in Figure 1(a),
the input in the left side is equal to first permut-
ing the sequence and then masking the tokens

in rightmost (ro and x4 are masked in the per-
muted sequence (z1, T3, T5, T2, Z4) as shown in
the right side). For PLM in Figure 1(b), the se-
quence (1, 2,3, T4, Ts5) is first permuted into
(21,3, 5,29, x4) and then the rightmost tokens
x9 and x4 are chosen as the predicted tokens as
shown in the right side, which equals to the left
side. That is, in this unified view, the non-masked
tokens are put in the left side while the masked and
to be predicted tokens are in the right side of the
permuted sequence for both MLM and PLM.

Under this unified view, we can rewrite the ob-
jective of MLM in Equation 1 as

n
]EZEZn Z log P(':Uzt |$Z<:c7 MZ>C; 9)7 (3)
t=c+1

where M. denote the mask tokens [M] in position
Z>c. As shown in the example in Figure 1(a), n =
5a c = 39 xZ<:c = (x17x37x5)’ ‘/'UZ>C = (.’1:27"1?4)
and M.__ are two mask tokens in position z4 = 2

and z5 = 4. We also put the objective of PLM from
Equation 2 here

n
EzEZn Z log P(th|$Z<t; 0) (4)
t=c+1

As can be seen from Equation 3 and 4, under this
unified view, MLM and PLM share similar mathe-
matical formulation but just with slight difference
in the conditional part in P(z.,|-;¢): MLM condi-
tionson x,___ and M. __, and PLM conditions on
z._,. In the next subsection, we describe how to
modify the conditional part to address the issues

and inherit the advantages of MLM and PLM.
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Figure 2: (a) The structure of MPNet. (b) The attention mask of MPNet. The light grey lines in (a) represent

the bidirectional self-attention in the non-predicted part (z,__,, M

) = (z1, 5, w3, [M], [M],[M]), which cor-

Z>c

respond to the light grey attention mask in (b). The blue and green mask in (b) represent the attention mask in
content and query streams in two-stream self-attention, which correspond to the blue, green and black lines in (a).
Since some attention masks in content and query stream are overlapped, we use black lines to denote them in (a).
Each row in (b) represents the attention mask for a query position and each column represents a key/value position.
The predicted part .., = (x4, T, T2) is predicted by the query stream.

2.3 Our Proposed Method

Figure 2 illustrates the key idea of MPNet. The
training objective of MPNet is

n
EZEZn Z logP(th|xZ<t7MZ>c;9)'
t=c+1

)

As can be seen, MPNet conditions on z._, (the
tokens preceding the current predicted token z,)
rather than only the non-predicted tokens z.__,
in MLM as shown in Equation 3; comparing with
PLM as shwon in Equation 4, MPNet takes more
information (i.e., the mask symbol [M] in posi-
tion 2~.) as inputs. Although the objective seems
simple, it is challenging to implement the model
efficiently. To this end, we describe several key
designs of MPNet in the following paragraphs.

Input Tokens and Positions For a token se-
quence x = (x1,x9, - ,xg) with length n =
6, we randomly permute the sequence and get
a permuted order z = (1,3,5,4,6,2) and a
permuted sequence =, = (z1,x3, x5, T4, Te, T2),
where the length of the non-predicted part is
¢ = 3, the non-predicted part is z.__,.

(x1,23,25), and the predicted part is z.. ., =
(z4,76,22). Additionally, we add mask tokens
M. . right before the predicted part, and ob-
tain the new input tokens (z,__ , M,  ,z.. ) =

(1, x3, x5, [M], [M], [M], 24, x¢, 2) and the cor-
responding position sequence (z<—c, 2>c, 2>¢) =
(p1,p3, P5, P4, D6, P2, P4, P6,P2), as shown in
Figure 2a. In MPNet, (z.__.,M,..)

(1, x3, x5, [M],[M],[M]) are taken as the non-
predicted part, and .. = (x4, z6, x2) are taken
as the predicted part. For the non-predicted part
(xz._., M,.,), we use bidirectional modeling (De-
vlin et al., 2019) to extract the representations,
which is illustrated as the light grey lines in Fig-
ure 2a. Next, we describe how to model the depen-

dency among the predicted part in next paragraph.

Modeling Output Dependency with Two-
Stream Self-Attention For the predicted part
Z..., since the tokens are in permuted order, the
next predicted token could occur in any position,
which makes it difficult for normal autoregressive
prediction. To this end, we follow PLM to adopt
two-stream self-attention (Yang et al., 2019) to
autoregressively predict the tokens, which is
illustrated in Figure 3. In two-stream self-attention,
the query stream can only see the previous tokens
and positions as well as current position but cannot
see current token, while the content stream can see
all the previous and current tokens and positions,
as shown in Figure 2a. For more details about
two-stream self-attention, please refer to Yang et al.
(2019). One drawback of two-stream self-attention
in PLM is that it can only see the the previous



Objective ‘ Factorization

MLM (BERT) | log P(sentence | the task is [M] [M]) + log P(classification | the task is [M] [M])
PLM (XLNet) | log P(sentence | the task is) + log P(classification | the task is sentence)
MPNet ‘ log P(sentence | the task is [M] [M]) + log P(classification | the task is sentence [M])

Table 1: An example sentence “the task is sentence classification” to illustrate the conditional information of MLM,

PLM and MPNet.
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Figure 3: The two-stream self-attention mechanism
used in MPNet, where the query stream re-uses the hid-
den from the content stream to compute key and value.

tokens in the permuted sequence, but does not
know the position information of the full sentence
during the autoregressive pre-training, which
brings discrepancy between pre-training and
fine-tuning. To address this limitation, we modify
it with position compensation as described next.

Reducing Input Discrepancy with Position
Compensation We propose position compensa-
tion to ensure the model can see the full sentence,
which is more consistent with downstream tasks.
As shown in Figure 2b, we carefully design the
attention masks for the query and content stream
to ensure each step can always see n tokens, where
n is the length of original sequence (in the above
example, n = 6)*. For example, when predicting
token z,, = zg, the query stream in the origi-
nal two-stream attention (Yang et al., 2019) takes
mask token M. = [M] and position p,, = ps as
the attention query, and can only see previous to-
kens x,_, = (x1,x3, x5, 24) and positions p,_, =
(p1,p3, D5, p4) in the content stream, but cannot
see positions p,._, = (pe,p2) and thus miss the
full-sentence information. Based on our position
compensation, as shown in the second last line of
the query stream in Figure 2b, the query stream can
see additional tokens M.~_5 = ([M], [M]) and

*One trivial solution is to let the model see all the input
tokens, i.e., 115% * n tokens, but introduces new discrepancy
as the model can only see 100% * n tokens during fine-tuning.

Objective ‘ # Tokens # Positions
MLM (BERT) |  85% 100%
PLM (XLNet) | 92.5% 92.5%
MPNet | 92.5% 100%

Table 2: The percentage of input information (tokens
and positions) leveraged in MLM, PLM and MPNet, as-
suming they predict the same amount (15%) of tokens.

positions p,__, = (ps, p2). The position compen-
sation in the content stream follows the similar idea
as shown in Figure 2b. In this way, we can greatly
reduce the input discrepancy between pre-training
and fine-tuning.

2.4 Advantage

The main advantage of MPNet over BERT and
XLNet is that it conditions on more information
while predicting a masked token, which leads to
better learnt representations and less discrepancy
with downstream tasks.

As shown in Table 1, we take a sentence
[The, task, is, sentence, classification] as an ex-
ample to compare the condition information of MP-
Net/BERT/XLNet. Suppose we mask two words
[sentence, classification] for prediction. As can
be seen, while predicting a masked word, MPNet
conditions on all the position information to cap-
ture a global view of the sentence (e.g., the model
knows that there two missing tokens to predict,
which is helpful to predict two tokens ‘“‘sentence
classification” instead of three tokens ‘“‘sentence
pair classification”). Note that PLM does not have
such kind of information. Furthermore, to predict
a word, MPNet conditions on all preceding tokens
including the masked and predicted ones for bet-
ter context modeling (e.g., the model can better
predict “classification” given previous token “sen-
tence”, instead of predicting “answering” as if to
predict “question answering”). In contrast, MLM
does not condition on other masked tokens.

Based on the above example, we can derive Ta-



ble 2, which shows how much conditional informa-
tion is used on average to predict a masked token
in each pre-training objective. We assume all the
three objectives mask and predict the same amount
of tokens (15%), following the common practice in
BERT (Devlin et al., 2019) and XLNet (Yang et al.,
2019)°. As can be seen, MLM conditions on 85%
tokens and 100% positions since masked tokens
contains position information; PLM conditions on
all the 85% unmasked tokens and positions and
15%/2 = 7.5% masked tokens and positions®, re-
sulting in 92.5% tokens and positions in total. MP-
Net conditions on 92.5% tokens similar to PLM,
but 100% positions like that in MLLM thanks to the
position compensation.

To summarize, MPNet utilizes the most informa-
tion while predicting masked tokens. On the one
hand, MPNet can learn better representations with
more information as input; on the other hand, MP-
Net has the minimal discrepancy with downstream
language understanding tasks since 100% token
and position information of an input sentence is
available to a model for those tasks (e.g., sentence
classification tasks).

3 Experiments and Results

3.1 Experimental Setup

We conduct experiments under the BERT base
setting (BERTgasg) (Devlin et al., 2019), where
the model consists of 12 transformer layers, with
768 hidden size, 12 attention heads as 12, and
110M model parameters in total. For the pre-
training objective of MPNet, we randomly permute
the sentence following PLM (Yang et al., 2019)7,
choose the rightmost 15% tokens as the predicted
tokens, and prepare mask tokens following the
same 8:1:1 replacement strategy in BERT (Devlin
et al., 2019). Additionally, we also apply whole
word mask (Cui et al., 2019) and relative positional
embedding (Shaw et al., 2018)® in our model pre-
training since these tricks have been successfully
validated in previous works (Yang et al., 2019; Raf-
fel et al., 2019b).

>XLNet masks and predicts 1/7 tokens, which are close to
15% predicted tokens.

PLM is actually a language model, which predicts the i-th
token given the previous ¢ — 1 tokens. Therefore, the number
of tokens can be leveraged on average is (n — 1)/2 where n
is number of predicted tokens.

"Note that we only improve upon PLM in XLNet, and we
do not use long-term memory in XLNet.

8We follow Raffel et al. (2019b) to adopt a shared relative
position embedding across each layer for efficiency.

For pre-training corpus, we follow the data
used in RoBERTa (Liu et al., 2019a), which in-
cludes: Wikipedia and BooksCorpus (Zhu et al.,
2015), OpenWebText (Radford et al., 2019a), CC-
News (Liu et al., 2019b) and Stories (Trinh and Le,
2018), with 160GB data size in total. We use a sub-
word dictionary with 30K BPE codes in BERT (De-
vlin et al., 2019) to tokenize the sentences. We
limit the length of sentences in each mini-batch up
to 512 tokens following the previous practice (Liu
et al., 2019b; Joshi et al., 2019) and use a batch
size of 8192 sentences. We use Adam (Kingma
and Ba, 2014) with 8 = 0.9, fo = 0.98 and
€ = le — 6. We pre-train our model for 500K steps
to be comparable with state-of-the-art models like
XLNet (Yang et al., 2019), RoBERTa (Liu et al.,
2019a) and ELECTRA (Clark et al., 2020). We use
32 NVIDIA Tesla V100 GPUs, with 32GB mem-
ory and FP16 for pre-training, which is estimated
to take 35 days’.

During fine-tuning, we do not use query stream
in two-stream self-attention and use the original
hiddens to extract context representations following
Yang et al. (2019). The fine-tuning experiments
on each downstream tasks are conducted 5 times
and the median value is chosen as the final result.
For experimental comparison, we mainly compare
MPNet with previous state-of-the-art pre-trained
models using the same BERTgasg setting unless
otherwise stated. We will also pre-train MPNet in
BERT argg setting in the future.

3.2 Results on GLUE Benchmark

The General Language Understanding Evaluation
(GLUE) (Wang et al., 2019) is a collection of 9
natural language understanding tasks, which in-
clude two single-sentence tasks (CoLA (Warstadt
et al., 2018), SST-2 (Socher et al., 2013)), three
similarity and paraphrase tasks (MRPC (Dolan and
Brockett, 2005), STS-B (Cer et al., 2017), QQP),
four inference tasks (MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016), RTE (Dagan et al.,
2006), WNLI (Levesque et al., 2012)). We follow
RoBERTa hyper-parameters for single-task fine-
tuning, where RTE, STS-B and MRPC are started
from the MNLI fine-tuned model.

We list the results of MPNet and other existing
strong baselines in Table 3. All of the listed re-
sults are reported in BERTgasE setting and from

Note that MPNet is still under pre-training with only
270K steps, but has already outperformed previous models.
We will update the results once pre-trained for 500K steps.



MNLI QNLI QQP RTE SST MRPC CoLA STS | Avg
Single model on dev set
BERT (Devlin et al., 2019) 84.5 91.7 91.3 68.6 932 87.3 589 89.5 | 83.1
XLNet (Yang et al., 2019) 86.8 91.7 914 740 94.7 88.2 60.2 89.5 | 84.5
RoBERTz2 (Liu et al., 2019a) 87.6 92.8 919 787 948 90.2 63.6 91.2 | 864
MPNet | 885 933 919 852 954 915 650 909 | 877
Single model on test set
BERT (Devlin et al., 2019) 84.6 90.5 89.2 664 935 8438 521 87.1 799
ELECTRA (Clark et al., 2020) | 88.5 93.1 89.5 752 96.0 88.1 64.6 91.0 | 85.8
MPNet \ 88.5 930 89.6 805 956 882 64.0 90.7 \ 86.3

Table 3: Comparisons between MPNet and the previous strong pre-trained models under BERTgasg setting on the
dev and test set of GLUE tasks. We only list the results on each set that are available in the published papers. STS
is reported by Pearman correlation, CoLA is reported by Matthew’s correlation, and other tasks are reported by

accuracy.
SQuAD v1.1 | EM  F1
BERT (Devlin et al., 2019) 80.8 88.5
RoBERTa (Liu et al., 2019a) | 84.6 91.5
MPNet | 86.8 925
SQuAD v2.0 | EM  F1
BERT (Devlin et al., 2019) 73.7 763
XLNet (Yang et al., 2019) 80.2 -
RoBERTa (Liu et al., 2019a) | 80.5 83.7
MPNet | 82.8 85.6

Table 4: Comparison between MPNet and the previous
strong pre-trained models under BERTgasg setting on
the SQuAD dev set. We report results by exact match
(EM) and F1 score.

single model without any data augmentation for
fair comparisons. On the dev set of GLUE tasks,
MPNet outperforms BERT (Devlin et al., 2019),
XLNet (Yang et al., 2019) and RoBERTa (Liu et al.,
2019a) by 4.6, 3.2, 1.3 points on average. On
the test set of GLEU tasks, MPNet outperforms
ELECTRA (Clark et al., 2020), which achieved
previous state-of-the-art accuracy on a variety of
language understanding tasks, by 0.5 point on av-
erage, demonstrating the advantages of MPNet for
language understanding. Since MPNet is still un-
der pre-training, we believe there still exists large
improvement space for MPNet.

3.3 Results on Question Answering (SQuAD)

The Stanford Question Answering Dataset
(SQuAD) task requires to extract the answer span
from the provided context based on the question.
We evaluate our model on SQuAD v1.1 (Rajpurkar
et al., 2016) and SQuAD v2.0 (Rajpurkar et al.,
2018). SQuAD v1.1 always exists the correspond-
ing answer for each question and the corresponding
context, while some questions do not have the
corresponding answer in SQuAD v2.0. For v1.1,
we add a classification layer on the outputs from
the pre-trained model to predict whether the token
is a start or end position of the answer. For v2.0,
we additionally add a binary classification layer to
predict whether the answer exists.

The results of MPNet on SQuAD dev set are
reported on Table 4. All of the listed results are re-
ported in BERTgasE setting and from single model
without any data augmentation for fair compar-
isons. It can be seen that MPNet outperforms
BERT, XLNet and RoBERTa by a large margin,
both in SQuAD v1.1 and v2.0, which are consis-
tent with the results on GLUE tasks, demonstrating
the advantages of MPNet.

3.4 Results on RACE

The ReAding Comprehension from Examinations
(RACE) (Lai et al., 2017) is a large-scale dataset
collected from the English examinations from mid-
dle and high school students. In RACE, each pas-
sage has multiple questions and each question has

"http://www.qizhexie.com/data/RACE _leaderboard.html



SQuAD v1.1 | SQuAD v2.0 GLUE
Model Setting EM Fl1 EM F1 MNLI SST-2
MPNet 850 914 |80.5 833 | 862 94.0
— position compensation ( = PLM) 83.0 899 | 785 81.0 85.6 93.4
— permutation (= MLM + output dependency) | 84.1 90.6 | 79.2  81.8 85.7 93.5
— permutation & output dependency (= MLM) | 82.0 89.5 | 76.8 79.8 85.6 93.3

Table 5: Ablation study of MPNet under BERTgasE setting on the dev set of SQuAD tasks (v1.1 and v2.0) and
GLUE tasks (MNLI and SST-2). The experiments in ablation study are all pre-trained on the Wikipedia and
BooksCorpus (16GB size) for 1M steps, with a batch size of 256 sentences, each sentence with up to 512 tokens.

RACE IMDB
Acc. Middle High | Err.
BERT* | 65.0 71.7 62.3 5.4
XLNet* | 66.8 - - 4.9
MPNet* | 704  76.8 67.7 4.8
MPNet | 72.0 76.3 70.3 4.4

Table 6: Results on the RACE and IMDB test set un-
der BERTgasE setting. For RACE, the results of BERT
are from the RACE leaderboard!°and the results of XL-
Net are obtained from the original paper (Yang et al.,
2019). “Middle” and “High” denote the accuracy on
the middle school set and high school set in RACE. For
IMDB, the result of BERT is from Sun et al. (2019)
and the result of XLNet is ran by ourselves with only
PLM pre-training objective but no long context mem-
ory (Yang et al., 2019). “*” represents pre-training only
on Wikipedia and BooksCorpus (16GB size).

four choices. The task is to select the correct choice
based on the given options.

The results on RACE task are listed in Table 6.
We can only find the results from BERT and XLNet
pre-trained on Wikipedia and BooksCorpus (16GB
data). For a fair comparison, we also pre-train MP-
Net on 16GB data (marked as * in Table 6). MPNet
greatly outperforms BERT and XL Net across the
three metrics, demonstrating the advantages of MP-
Net. When pre-training MPNet with the default
160GB data, an additional 1.6 points gain (72.0 vs.
70.4) can be further achieved.

3.5 Results on IMDB

We further study MPNet on the IMDB text classi-
fication task (Maas et al., 2011), which contains
over 50,000 movie reviews for binary sentiment
classification. The results are reported in Table 6.
It can be seen that MPNet trained on Wikipedia
and BooksCorpus (16GB data) outperform BERT

and PLM (XLNet) by 0.6 and 0.1 point. When
pre-training with 160GB data, MPNet achieves ad-
ditional 0.4 point gain.

3.6 Ablation Study

We further conduct ablation studies to analyze sev-
eral design choices in MPNet, including introduc-
ing dependency among predicted tokens to MLM,
introducing position compensation to PLM, etc.
The results are shown in Table 5. We have several
observations:

e After removing position compensation, MPNet
degenerates to PLM, and its accuracy drops by
0.6-2.3 points in downstream tasks. This demon-
strates the effectiveness of position compensa-
tion and the advantage of MPNet over PLM.

e After removing permutation operation but still
keeping the dependency among the predicted
tokens with two-stream attention (i.e., MLM +
output dependency), the accuracy drops slightly
by 0.5-1.7 points. This verifies the gain of per-
mutation used in MPNet.

e If removing both permutation and output depen-
dency, MPNet degenerates to MLM, and its ac-
curacy drops by 0.5-3.7 points, demonstrating
the advantage of MPNet over MLM.

4 Conclusion

In this paper, we proposed MPNet, a novel pre-
training method that addresses the problems of
MLM in BERT and PLM in XLNet. MPNet lever-
ages the dependency among the predicted tokens
through permuted language modeling and makes
the model to see auxiliary position information to
reduce the discrepancy between pre-training and
fine-tuning. Experiments on various tasks demon-
strate that MPNet outperforms MLM and PLM, as
well as previous strong pre-trained models such as



BERT, XLNet, RoBERTa by a large margin. In the
future, we will pre-train MPNet with larger model
setting for better performance, and apply MPNet
on more diverse language understanding tasks.
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A Pre-training Hyper-parameters

The pre-training hyper-parameters are reported in
Table 7.

Hyper-parameter | Value

Number of Layers 12

Hidden Size 768
Filter Size 3072
Attention heads 12
Dropout 0.1
Weight Decay 0.01

Table 7: Pre-training hyper-parameters for BERTgasg
setting.

B Fine-tuning Hyper-parameters

The fine-tuning hyper-parameters are reported in
Table 8.

C More Ablation Studies

We further conduct more experiments to analyze
the effect of whole word mask and relative po-
sitional embedding. The results are reported in
Table 9.



Hyper-parameter RACE SQuAD GLUE
Learning Rate 1.5e-5 2e-5 le-5,2e-5,3e-5
Batch Size 16 48 16, 32
Weight Decay 0.1 0.01 0.1
Epochs 5 4 10, 15
Learning Rate Decay | Linear  Linear Linear
Warmup Ratio 0.06 0.06 0.06

Table 8: Fine-tuning hyper-parameters for RACE, SQuAD and GLUE.

SQuAD v1.1 | SQuAD v2.0 GLUE
Model Setting EM Fl1 EM Fl1 MNLI SST-2
MPNet 850 914 [80.5 833 | 862 94.0
— whole word mask 84.0 905 | 799 825 85.6 93.8
— relative positional embedding | 84.0 90.3 | 79.5 82.2 85.3 93.6

Table 9: Ablation study of MPNet under BERTgasE setting on the dev set of SQuAD tasks (v1.1 and v2.0) and

GLUE tasks (MNLI and SST-2).



